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I. IiLroduc t ion

We study tests of hypothe.ses for a regression parameter within 'the

context of the Box and Cox (1964) power transformation family. The model

is given by

Y( ). X a. + 0 r.,il, .. N ,
1 1 1

(i) I iI

x.8" (v. wi )( 2 ) , {wiY are scalars
1 11id(Y i 2

Y( = (Y X-1)/A if A 0 0

= log Y if A = 0

Here a is the standard deviation and ' ' N are independently

and identically distributed with mean zero and variance one. We are

intere:. ted in testing th, hLypothc, is

(2) He: Y2 0

In what follows, A will be an estimate of A , X (yi,y ) will be

the least squares estimaites in the estimated scale X and -(yiY2)
will be the least squares estimates calculated in the true but unknown

scale X . A substantial literature now exists, although there has been

no real emphasis on the hypothesis testing problem (2); see Andrews (1971),

Atkinson (1973), Hinkley (1975), Carroll (1980), Bickel and Doksum (1980),

and Carroll and Ruppert (1980) as a subset of this literature.

t 0f course, if the errors are normally distributed, the obvious mnethod
for testing (2) is the likelihood ratio test or LRT. Equivalent to this in

large samples is the Wald test WT which is based on divided by an

appropriate estimate of its standard error. In practice what is most often

done is to select the scale A* and then do the usual analysis in this

scale, i.e., divide y by the uisual formula for its estimated standard

error. We denote such an anilysis by CT , for conditional test based on

the estimated scale A*. Iinkley (1975) was apparently the first to

recoguize that these tt,;ts are not all equivalent.
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Example I. Consider the location model for log-normal data with

= , 1 = I and normal errors, following

log Y. 1 1 4 c.

1 1

Estimate ) by the norma I theory MLE. Then N I/2t(i' ,) is asymptotically
2 2normally distributed with wean zero and variince I + (I + 11) /6 . Thus,

in tostlilo 1 C' : 0 , the t.;t G'T which rje-cts when N 1/2 u*/ exceeds

the normal I-A/2 pereecntile always has a higher level than the desired

level , at least asymptotically.

However, in some can;es the test CT is quite good. Bickel and

Doksum (1980) recognized this for the case of simple linear regression

through the origen. We present an illustrative example.

Example 2. Consider log-normal simple linear regression

with X 0, a - I

log Y = Bo X +

IN k
N X xIt ,,k , k - 1,2,3,4

In this important special case, it is possible to show by very detailed
likeihod clcultio' tat 1/2 *

likelihood calculation: that N2(8 - a) is asymptotically normally

distributed with mean zero and variance

Of course, N1 2 (S -I has limit variance equal to one. The test

CT rejects H : 0 a 0 whenever

N / I1/0* , ,

where t(aN-2) is the two-sided t-percentile. The Wald test WT
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rejectswh n N, )/XSA is large Wh equation (3) says is that

asymptotically

(a) Lhe test CT has the correct level, since s2(0) 1
(b) the test CT has higher power than the WI or LRT.

The theory developed by Bickel and Doksum (1980) and outlined in

the next section suggests that when the naive test CT has the correct

level, it will also have better power than the WT or LRT. That such

a phenomenon is possible is noL too surprising in view of the fact that

when PO and a-I are known, the statistical curvature (Efron (1975))

for estimating A is yo 2. 1O2/3 when X-0 ; Efron suggests
2f 2> 1/8 is largel

0 -

The purpose of this article is to describe situations in which the

test CT has the correct level; this we do in Section 3. Basically, we

require only that the (w.1 be independent of the {v.} , a situation

that obtains in many important models including simple linear regression

and balanced factorial designs.

I

I ; : = - . .. . . .. .. . .. . . . . --: --- _ , --- " : . , : . . .. . . .. ... . . ..
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2. Small o Asymptotics

Assume that the errors (ci( are symmetrically distributed. Bickel

and Doksum (1980) find m.jor technical simplifications by letting o-*O

as N-,. . Define

A ()x ) A(A A) A^ = ( I "'

Q - (AA)-I Ad d - (dI  - dN)

d (X- .2 ((V -) - . 'r, . ,)))

V.-I + Xx.
I I

N- = I (dd -d'd) ' E > 0.

From stand.ard regressivti Hovozy, we kw ow that N/(I - )/a is

asymptotically uormally diitrlbiited with mean ..ro and covariance

-I ' I(4) low lim (N- A'A) .
N*-,

S1/2
Bickel and Doksum show that NI(00-B)/o has asymptotic covariance

(s) l" li, N-QQ'C

N Suppose that xi  (vi wi with w. scalar and v i a (I xp) vector.

I.Define n - (0 ... 0 1) .Then asynuptotically the test CT rejects

H: y 0 if

N *I/,( q, , /2>t(n, N-p-I)

Equ.itions (4) and (5) tell us that CT has the correct level if

(6) n(Il-70o)n -O whvn H: 2 - 0 obtains.

Further, since QQ is positive semidefinitv, CT will have power at

least as large as WdT or LRT when (6) obtains. Another example

illustrates this.

*-L* -
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Example 3. We coUsider the sHInIll 0 asymptotics for the two group

analysis of covariance model when A 0 0

log Y. = + 0 si  + . , +=+, ... , 2N

S I s20- , S3 s4 . 2N=-I

The param,ter p is th(e treatme1nt effect, and we arc interested in

testing

i1 p = 00

Let E be as above and set

2N 2N 2
x. O , i . 2N

X2N 2N 2

s X 2Na , . s.X.= 2Nb
I I ,I ,

2N 3
X Me

We will show that the test CT has the correct level when the design
is balanced over the two treatments in the first two moments of {X. }A)

i.e., a-b-0 . When A -0 is knowa. N1/ 2 (^-p)/o has asymptotic variance

(]-a2) . Estimating X by maximum likelihood, we find that
4 1/2

N (p*-p)/o has asymptotic variance

2 (1-a2 )
- I + (4E(I-a2)2)

- , (0 2 - 2ap S)b - 82a ca 2

22

e +- 
)  /

Hence the test CT ha~s the correct level if a =b 0

"El
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4. The )-(-ve of the tt;t T(

In Example 3 we saw that when X-m0 and tt! covariates are

independent of the treatment assignment, then the test CT has the

correct level. A generaliatLion of this to the model (1) and hypothesis(2)

might then need (v.) to he independent of (w. . In the following1 1

we state conditions which formalize this notion and are at the same

time not re:tricted to thi MLE A as an estimate of A . Our

assumptions are stated in such a fashion as to allow the design (x I

to also he randomly geuierated.

A.;suniption 1. A is root-N consistent, i.e., N (X - X) = (1)
p

Assumption 2. N ( -U ) is asymptotically normally distributed.

Assuntion __3. Therv, .:t.; o with o*/o - i

Assueptici 4 For the sequence (w

NIN

NII
12

.ialmost surely if the {w } are random.

Assumption i5. Let FN(v,w,e) be the empirical distribution function

of ((xt.)d - (v. ,w..) i . Suppose there exists distribution functions

F 19F2  and F 3such that

FN (v,w,e) --- F (v) 2 (w)F 3 (e)

almost serely. Further, C(x i , r')i are uniformly bounded.

r,_' L:,7 .:., -_ . . .. .. . . . ... . . . ... .... ... . ... - -- ,,- 7 . _7 -.. ' - . _" . .. . ... . . . . . . . . . .
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Theorem. Make the Assuuitions I - :5. Then under Ii y 0 the

1/2i 0/ 2 h
statistics N /o and N 1 / are each asymptotically normally

distributed with mean zero and variance one. Hence, the test CT has

the correct asymptotic level.

Note that the theorem is stated only in terms of the design, as

long as we have appropriate estimates of X and o . The value of

A itself is not im1.ort;1nt, in contrast to Examples 1- '3.

Some cotivnent on the assumptions is in order. Assumption 1 is

crucial, but obviously X neid not be the normal theory MLE ; see

ilinkley (1975), Carroll (1980) and Bickel and l)oksum (1980) for other

suggestions. Assumption 4 will hold if there is an intercept; otherwise

it seem-; necessary, as the work of Bickel and Doksum indicates for simple

regression through the origen. Assumptions 2- -3 are hardly onerous.

The only restrictive assumption is *5. The boundedness is needed

only in a technical sense to make the proof fairly easy. Also, one of the

most common assumptions in regression is that the errors {Ci} are

independent of the disign {x. (viwi)) . The heart of Assumption 4'5

is thus the requirement that {v.) be unrelated to [w .)

When is this requirement satisfied? It certainly holds for simple

linear regression under Assumption *4, either with or without an origen.

More importantly, it holds for balanced K x2 designs where the test

is for the treatment effect. Another important example in which Assump-

tion * 5 will hold is general two-group analysis of covariance in which
the covariates are equally disLributed across the treatments, as might

occur with random or blocked allocation.

It should also be noted that the CT test will be of the correct

level even when (wi ) and Y2 are vectors rather than scalars, as in

general factorial designs or many-group analysis of covariance. The

requirement remains that (w.) should be unrelated to (vi.

,11
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We have shown th-at the rather naive test CT which picks a scale A

and then pcrfoMs the usual F-Lest, has .the correct asymptotic level in

many important statistical problems. Generally speaking, this level

obtains in balanced designs. When the test CT has the correct asymptotic

level, it generally outperforms Wald's test and the likelihood ratio test.

6. Proof of the Theorem

Write A = (x I  x N ) By Assumption 4- 5 we have

(8) N-IA I A0(s))

the conv(r-ence bcing with probability one in case of randomness. By (8)

and Assu:,ptions 142- 1:4, N 2 (Y 2- Y2)/o* is asymptotically normally

distributed with mein zero and variance one, so it suffices to show

that under o: Y2 0

(9) NI/2(Y ) -P-> 02 2

Because of (8), (9) will follow by proving

(10) N-1/ 2  N Y %7y *
i - o

By a Taylor expansion, the left hand side of (10) becomes

NI12( ) s-N wN. • '

so that by Assumption 4 1 we need only show

) N- N w -P-, 0,
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Now, under 11o 0Y2 0 there exists a bounded function G with

so that (Ii) becomes

IN

(12) N- w. C(v y , oci) P_> 0 •
|I ' 1

But from Assumption *5 the lcft side of (12) converges to

f w G(vy,or.) d F I (w) d F 2 (v) d F 3 (c) - 0

the last following from Assumplion

'i

4i.. '
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